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Task Progress: Grasp the plate and sponge. Use the sponge to clean the plate.
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In contrast to (i) keyframe-based policies, which excel in spatial localization but struggle with movement restrictions
curved motion and collision-free actions), and (ii) continuous-action-based policies, which accommodate diverse

trajectories but lack strong perception, we introduce a continuous action policy that incorporates two interfaces: target gripper
poses and object pointflow, balancing task diversity with spatial awareness. Our model, PPI, surpasses previous states of the

art and consistently outperforms its ablated variants.

Abstract—Bimanual manipulation is a challenging yet crucial
robotic capability, demanding precise spatial localization and
versatile motion trajectories, which pose significant challenges
to existing approaches. Existing approaches fall into two cate-
gories: keyframe-based strategies, which predict gripper poses
in keyframes and execute them via motion planners, and con-
tinuous control methods, which estimate actions sequentially at
each timestep. The keyframe-based method lacks inter-frame
supervision, struggling to perform consistently or execute curved
motions, while the continuous method suffers from weaker spatial
perception. To address these issues, this paper introduces an
end-to-end framework PPI (keyPose and Pointflow Interface),
which integrates the prediction of target gripper poses and
object pointflow with the continuous actions estimation. These

interfaces enable the model to effectively attend to the target
manipulation area, while the overall framework guides diverse
and collision-free trajectories. By combining interface predictions
with continuous actions estimation, PPI demonstrates superior
performance in diverse bimanual manipulation tasks, providing
enhanced spatial localization and satisfying flexibility in handling
movement restrictions. In extensive evaluations, PPI signifi-
cantly outperforms prior methods in both simulated and real-
world experiments, achieving state-of-the-art performance with
a +16.1% improvement on the RLBench2 simulation benchmark
and an average of +27.5% gain across four challenging real-world
tasks. Notably, PPI exhibits strong stability, high precision, and
remarkable generalization capabilities in real-world scenarios.
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I. INTRODUCTION

Endowing robots with dexterous bimanual skills similar
to humans has become a main focus in robotic manipula-
tion [3} 16 14} 34, 36]. Recent efforts primarily fall into two
categories: one focuses on “keyframe”, like [9, [13]], which
predict actions in the reference frames and execute predictions
via Inverse Kinematics (IK) solvers and motion planners [31].
The other emphasizes “continuous” and perform naive be-
havior cloning at each time step. For example, ACT [48]]
and RDT [18] learn RGB-based manipulation policies from
multiple cameras, while DP3 [46] integrate 3D scene-level
representations into a diffusion policy.

However, due to the temporal granularity of action predic-
tion, the keyframe-based methods predicts actions only at few
keyframes. This sparse supervision encourages the model to
focus more on local features, enhancing spatial perception.
Nevertheless, for tasks involving restricted movements (e.g.,
wiping a plate, which requires curved trajectories), keyframes
are difficult to define and the motion planner [31, [30] tends
to output near straight-line paths, making such tasks chal-
lenging to accomplish. For continuous-based methods, they
are generally applicable to a wide range of tasks. Whereas,
since they rely on naive behavior cloning with dense su-
pervision on actions, the model tends to “take shortcuts”
by overfitting to seen trajectories (e.g., proprioception). This
results in weaker spatial perception capabilities. Therefore,
implementing diverse general bimanual tasks while preserving
strong perceptual capabilities remains a critical challenge.

To this end, this paper presents a simple yet effective end-
to-end interface-based continuous policy that integrates the
strengths of previous approaches. As illustrated in Figure [I}
our model predicts continuous actions conditioned on two key
interfaces: the target gripper keypose and object pointflow.
These interfaces enable the model to capture fine-grained
spatial features and comprehensively model the interaction
between the robot and the object. We implement a diffusion
transformer [13} 46[] to process both interfaces, naming our
approach PPL. By distilling spatial knowledge from these
interfaces, PPI strikes a balance between handling diverse tasks
and maintaining strong perception capabilities. Leveraging a
unidirectional attention within the transformer, PPI progres-
sively infers actions and is trained in an end-to-end manner.

We conduct extensive experiments on both simulation and
real-world benchmarks. On the bimanual manipulation bench-
mark RLBench?2 [9]], our method achieves a 16.1% higher suc-
cess rate across seven representative tasks compared to state-
of-the-art baselines. We further provide comprehensive visu-
alizations to validate the effectiveness of the two interfaces.
Additionally, we evaluate our approach on four challenging
real-world tasks [42], demonstrating superior performance in
long-horizon task execution, generalization to unseen objects,
robustness to lighting variations, and resilience against visual
distractions.

Our contributions are summarized as follows:

e We present a novel framework that utilizes keyframe

information to guide continuous action generation, im-
proving flexibility in addressing movement constraints.

o We propose two effective interfaces—target gripper poses
and object pointflow to boost spatial localization and
generalization.

« We provide comprehensive analyses to validate the power
of two interfaces. We achieve the state-of-the-art perfor-
mance on a bimanual simulation benchmark and demon-
strate strong robustness, effectiveness, and generalization
in real-world long-horizon tasks.

II. RELATED WORKS
A. Behavior Cloning in General Bimanual Manipulation Tasks

Current behavior cloning methods for general bimanual
manipulation tasks can be broadly classified into two cat-
egories. The first category involves keyframe-based strate-
gies [9. (16} 8], where keyframe representations [2, 49, 33]] are
learned and executed through motion planners. Approaches
such as PerAct2 [9] and VoxAct-B [16] predict target gripper
poses in a reference frame using voxel-based representations.
Additionally, DualAfford [49] learns collaborative object-
centric affordances and applies heuristic policies for execution.
However, these methods rely on rule-based keyframe split and
motion planners, which limits their ability to handle tasks
that require irregular motion trajectories (e.g., dishwashing)
or strict temporal coordination (e.g., tray lifting). The second
category involves continuous control, where actions are esti-
mated sequentially at each time step. For instance, ACT [48]]
uses an action-chunking transformer to predict actions in an
end-to-end manner, while RDT [18] employs a diffusion-
based transformer, pre-trained on large robot datasets and
fine-tuned on self-collected bimanual data. BiKC [44], is an
RGB-based hierarchical framework consisting of a high-level
keypose predictor and a low-level trajectory generator. Some
works also extend single-arm manipulation policies [4} |46]]
to the bimanual setting. In contrast to these continuous con-
trol approaches, our method integrates a 3D semantic neural
field [37, 38]] and predicts pointflow as an additional interface,
thereby enhancing spatial localization capabilities.

B. Flow-based Methods in Robotic Manipulation

Robot manipulation policies have utilized either 2D pixel-
level motion [[12} 132} 25! 141]] or 3D point-level flow [47, 20, S]]
for object interaction. In 2D flow-based approaches, recent
pixel-tracking algorithms [[12] estimate motion flows in robotic
video data. Track2Act [1] integrates a residual strategy atop
heuristic and flow-based policies, while ATM [40] learns
a flow-conditioned behavior cloning policy trained on self-
collected, in-domain data. Im2Flow2Act [43] further intro-
duces a data-efficient, fully autonomous flow-conditioned pol-
icy, leveraging task-agnostic datasets for one-shot real-world
transfer. Unlike these 2D methods, PPI leverages 3D point-
level flow, enhancing spatial localization and enables more
accurate manipulation. This approach builds upon prior work
in 3D flow-based policies, which have shown promising results
in articulated object manipulation [7], tool use [26| 22], and



general skill learning [45]. However, these methods typically
rely on manually designed or heuristic policies during exe-
cution after estimating 3D flow. In contrast, PPI introduces
an end-to-end manipulation policy, eliminating the need for
heuristic post-processing.

III. METHOD

In this section, we describe PPI in detail. We begin with
a brief problem formulation (Section . Next, we discuss
the perception module (Section [I[II-B) in PPI, involving the
construction of 3D semantic neural field and initial query
points. Subsequently, we elaborate on the key interface de-
signs—Pointflow and Keypose (Section [II-C), enhancing PPI
spatial localization capabilities. Then, we illustrate the action
prediction module (Section [[TI-D), which is a diffusion-based
transformer with unidirectional attention. Finally, we provide
a detailed implementation details during training and inference
phases (Section [lII-E).

A. Problem Formulation

At time step ¢, PPI takes inputs as the language instruction [
and RGBD images 7 from K cameras, and outputs a sequence
of h® continuous actions af = {as¢ype}, Where each action
a; represents the target gripper poses and openness for both
the left and right grippers. Crucially, PPI incorporates two
intermediate inferfaces at keyframe timesteps as additional
conditions for action prediction. The keyframes t* are defined
as turning points in the trajectory where there are signifi-
cant changes in the grippers’ openness and the arms’ joint
states [[L1, 27]. For the interfaces, the first specifies the tar%et
gripper poses at the subsequent h* keyframes: a¥ = {a, }/,.
The second interface defines the positions of N, spatiallquery
points at the next h* keyframes: F € RA"*Nax3 At each
keyframe timestep t¥, the positions of the N, points are
denoted as Fyx € RV 3 with initial positions at the first frame
given by Fy € RV*3,

B. Perception

3D Scene Representation. As is seen in Figure Qka), we
represent the scene using 3D semantic fields, focusing on
both geometric and semantically meaningful regions. We begin
by preprocessing the raw point clouds through cropping and
downsampling. For each sampled 3D point, we project it
onto 2D RGB images from multiple camera viewpoints to
extract pixel-wise semantic features using the DINOv2 [19]
model. We fuse these features through a weighted sum, where
the weights are determined by the point’s distance from the
projected surface.

To mitigate the computational burden of numerous scene
tokens in the transformer backbone, we downsample scene
points while preserving their geometric and semantic infor-
mation. We use a PointNet++ dense encoder [23] to obtain a
compact scene representation S; € RN+*(3+D) where each of
the IV, points encodes spatial coordinates and a D-dimensional
fused semantic feature. This compressed representation retains

key geometric and semantic details while enhancing local point
relationships through the set abstraction of PointNet++.

Initial Query Points Sampling. Instead of directly learning
the pointflow distribution p(F'), we choose to approximate
the conditional distribution p(F|Fy), where F, represents
the initial query points sampled from the manipulated object
at the first frame. This approach shifts the model’s focus
from inferring global absolute coordinates to capturing overall
object motion. Consequently, even when the object position is
out of distribution, PPI can estimate pointflow accurately and
robustly, demonstrating improved generalization.

To get the initial query points Fj, we randomly sample
N, query points from the object to be manipulated at the
beginning of the task. We use the Grounding DINO model [17]
to obtain a bounding box from the language prompt and
image, then input the bounding box into the SAM model [[15]]
to generate the object mask. We obtain the 3D coordinates
Fy € RNaX3 of the N, pixels sampled from the mask. In
practice, we find that N, = 200 points are sufficient for all
tasks, both in simulation and the real world. It is worth noting
that in each episode, we will only perform this operation once.

C. Interface

Target Gripper Poses. We predict target gripper poses at
keyframe timesteps as explicit action goals to better guide
continuous action generation. To supervise the target gripper
poses, we first use a heuristic algorithm to identify the
keyframe timesteps in the trajectory. Once a keyframe t¥ is
established, its corresponding action label a,x can be directly
retrieved. If there are fewer keyframes renllaining after the
current timestep than h*, we pad the sequence by repeating
the action of the last keyframe.

Object Pointflow. A key challenge in obtaining ground truth
labels for pointflow is the inevitable occlusion that occurs
when the object moves or is manipulated. We address this chal-
lenge by leveraging the object’s 6D pose to track the real-time
points’ positions. In simulation, we obtain the ground truth
6D pose label of rigid objects from the RLBench2 [9] dataset,
while in the real world, we estimate it using BundleSDF [39]]
and Foundation Pose [2]]. Given the object’s 6D pose at the
first and each keyframe timestep, we transform the query
points from the first frame F{, into the object’s coordinate
frame and then back into world coordinates, yielding their
keyframe positions F,x € RY*3, which serve as the ground
truth for pointflow sup@:rvision. Here real-time object 6D pose
estimation is not required during inference. Overall, object
pointflow along with target gripper poses effectively model
the interaction between the object and the robot.

D. Prediction

Observation Encoder. PPI processes four types of inputs:
the 3D semantic neural field S;, the language instruction /,
the robot states ¢; and the initial positions of point queries Fj.
The language is encoded using a CLIP text tokenizer [24] and
projected into a latent space via a three-layer MLP. Similarly,
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Fig. 2: Overview of PPIL. (a) Perception. We first construct a 3D semantic neural field S; and sample initial query points
Fy for pointflow prediction. (b) Interface. Next, we define two intermediate interfaces: target gripper poses af and object
pointflow F'. (c) Prediction. Finally, a diffusion transformer incorporates robot proprio tokens c¢;, scene tokens S, language

tokens [, pointflow query tokens Fy and action tokens a¥ and a§

with gaussian noise. Using a carefully designed unidirectional

attention, the model progressively denoises action predictions conditioned on the interfaces.

the robot states and point queries are projected into the latent
space through a three-layer MLP.

Diffusion Transformer. The backbone of the prediction
module builds upon a drffusron transformer At the time step t
and denoising step i, let at * and ay’’ be the keyframe action
a¥ and continuous action af with noise. The transformer in-
coporates the scene tokens S;, language tokens [, query points
tokens Fj, and noised action tokens a,"’ and a$’. Outputs are
supervised by gaussian noise €, €. via DDPM training
and ground truth pointflow F' via direct regression.

Notably, we design a unidirectional attention that lever-
ages the interfaces to bridge the gap between input and
output modalities. As shown in Figure [2fc), all pointflow
and action tokens attend to the scene and language tokens,
integrating spatial and semantic knowledge. Moreover, the
noised keyframe action token af’l attends to the pointflow
token, aiming to extract additional object-level features. The
final continuous action token ay’ " attends to all the previous
tokens, not only distilling regular scene-level features but also
fully utilizing the local and detailed features contained in the

interfaces.

We apply relative attention, as introduced in previous
work [13]], between point flow tokens F', keyframe action to-
kens af’i, continuous action tokens af’i, and scene point cloud
tokens S, enabling the encoding of relative 3D positional
information in the attention layers. This relative attention relies
on the relative 3D positions of features and is implemented
using rotary positional embeddings [29]]. For language instruc-
tions [, we use regular cross and self-attention. The robot’s
proprioception ¢; and denoising timesteps ¢ affect the attention
through Feature-wise Linear Modulation(FiLM) [21].

E. Implementation Details

Training. For the PPI network ¢y, the continuous action loss
L., the keyframe action loss Ly, and the pointflow prediction
loss L are computed via Ly loss.

e = |lea(Se, Fo, £, cr, a5 ) — €l
Ly = ||ea(Sy, Fo, £, v, ap™ i) — €|
Lr = |leg(St, Fo, l,ct,7) — Fl
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Fig. 3: Task process visualizations in four real-world tasks.

The overall training loss is:
ﬁg = wlﬁc + wgﬁk + w3£F

where w;, wy, and ws are hyperparameters set to 0.05,
0.05, and 1, respectively. We use DDPM with 1000 training
timesteps for noise scheduling in all experiments. We train 500
epochs for tasks from RLBench2 benchmark and 5000 epochs
in real-world tasks, with a batch size of 128 and learning rate
of le-4 with a cosine decay learning rate scheduler. For tasks
involving 100 episodes, each with 150-250 timesteps, we train
the model using eight A100 GPUs for approximately 20 hours,
and use the checkpoint with the lowest average validation loss
for evaluation.

Inference. We begin by sampling 200 points on objects
as query points at the first timestep. Then at each timestep
t, we draw random initial continuous action samples af and
keyframe action samples af from a Gaussian distribution and
denoise 1000 steps with DDPM in simulation tasks and 20
steps with DDIMJ[28]] for real-world tasks. In practice, we
predict 50 continuous actions and 4 keyframe actions and
pointflow.

IV. REAL-WORLD EXPERIMENTS

We carefully design four real-world tasks with high local-
ization demands and motion constraints to evaluate PPI ’s
capabilities in: (1) Effectiveness in long-horizon tasks. (2)
Robustness under high-intensity disturbances in objects and
environments.

A. Real-world Experiments Setup

Benchmark. We evaluate our method on two Franka Re-
search 3 robots across four tasks in two distinct scenarios
(Figure [). Each scene is equipped with two Eye-on-Hand
and one Eye-on-Base RealSense D435i cameras. In the first
desktop environment, we test three long-horizon tasks requir-
ing high localization accuracy and curved motion execution. In
the second shelf scenario, we employ Robotiq-2f-85 grippers
as end-effectors for the final task. Below, we briefly outline
the process for each of the four tasks (Figure [3), with further
details provided in the Appendix.

Real-world Table Scenario Setup

Id Shelf S

@: Franka Research 3 @: Eye-on-Hand RealSense D435i
@: Eye-on-Base RealSense D435i @): Robotiq-2f-85 Gripper

io Setup

Fig. 4: Two real-world setups.

1) Carry the Tray. Both arms must collaboratively lift a
tray stacked with cups or other objects from a lower
platform and steadily transfer it to a small table. This
task evaluates the ability to precisely locate the tray’s



TABLE I: Real-world main results. We evaluate all the methods with 10 (settings) x 3 (repeated trials) rollouts per task. Our

method achieves better performances among all tasks than baselines. The best results are bolded.

SR (%) 1 /Loc-SR (%) 1 / Normalized Score 1

Handover and Insert the Plate

Wipe the Plate

Scan the Bottle

3D Diffuser Actor

Method Avg. Success T Carry the Tray
ACT 15.0/50.0/4.7 40.0/40.0/5.5
DP3 3507575755 50.0/50.0/6.0

Ours

5.00/650/4.6
62.5/92.5/8.2

0.00/70.0/45
50.0 /100 / 7.8

10.0/70.0/5.0
20.0 / 80.0 / 4.7
0.00 / 100/ 6.0
40.0 /100 / 7.7

0.00/40.0/3.8
40.0 / 60.0 / 6.5
0.00/50.0/3.5
70.0 / 80.0 / 8.3

10.0/50.0/4.3
30.0/40.0/4.8
20.0/40.0/4.38
90.0 / 90.0 / 9.3

centerline and maintain stable, coordinated movements
throughout the process.

2) Handover and Insert the Plate. The right arm picks up
the plate and hands it over to the left arm, which then
inserts it into an available slot in the rack. This task
tests temporal coordination during handover and precise
spatial perception.

3) Wipe the Plate. Each arm picks up the sponge and
the plate, respectively, and uses the sponge to wipe
the plate. After wiping, both objects are returned to
their original positions. This task evaluates the ability
to perform curved motions in interactive tasks.

4) Scan the Bottle. The right arm retrieves the bottle from
the shelf, while the left arm picks up the scanner from
the table to scan the bottle’s barcode. After scanning,
the bottle is placed into a box. This task assesses 6-DoF
picking in a more constrained spatial environment and
the coordination between both arms.

Expert demonstrations. We constructed two isomorphic
teleoperation devices GELLO [42] for the Franka Research
3 to collect expert demonstrations. We collected 50 demon-
strations for the task “Carry the Tray” and 20 for other tasks.
The limited number of training samples is intended to evaluate
whether the policies achieve excellent spatial localization and
perception of objects with minimal data.

Baselines. We implement an Action Chunking Transformer
(ACT) [48] that predicts target joint positions from 2D RGB
inputs. We also adapt DP3 [46] into a bimanual framework,
which is a 3D point-cloud-based continuous control policy.
Additionally, we reproduce the 3D Diffuser Actor [13]], a
keyframe-based diffusion policy utilizing 3D semantic fields.

Metrics. Each method is evaluated across 10 settings, with
3 trials per setting. Due to the long-horizon and complex
nature of the tasks, we have established three key metrics:
Success Rate (SR), Localization Success Rate (Loc-SR), and
Normalized Score. The Success Rate (SR) is only assigned a
value of 100% upon the successful completion of the entire
task. Loc-SR will be recorded 100% if the robots perform
well to find the object contact positions. Additionally, we
divide each tasks into 3 or 4 intermediate stages, and the
Score is progressively accumulated through the completion
of individual intermediate stages. Given that the number of
steps varies across these tasks, the score will be normalized
to a scale of 10. The scoring criteria and other details are
available in the Appendix.

B. Real-world Main Results

As shown in Table |I, PPI outperforms all baselines across
tasks. Compared to state-of-the-art methods, it achieves a
27.5% increase in average success rate (SR), a 27.5% improve-
ment in localization success rate (Loc-SR), and a 2.7 point gain
in Normalized Score. Compared to ACT, which relies on RGB
inputs, PPI demonstrates superior Loc-SR and overall scores.
As a single-frame observation algorithm, ACT struggles with
tasks requiring repetitive trajectories (e.g.,“Wipe the Plate”),
whereas PPI integrates multistep proprioception, effectively
leveraging historical information. Compared to DP3, a point-
cloud-based method prone to overfitting seen trajectories and
susceptible to noise [35], PPI exhibits stronger localization
ability and robustness to noised pointcloud. While 3D Dif-
fuser Actor, a keyframe-based policy using semantic neural
fields and heuristic action execution, performs well in Loc-
SR, it fails to account for collision constraints, leading to a
lower SR. In contrast, PPI not only inherits the perception
advantages of keyframe prediction but also effectively respects
path constraints inherent in training demonstrations.

C. Real-world Generalization Tests

As shown in Table and Figure 58] We introduce three
types of generalizations to evaluate the generalizability and
robustness: unseen objects to manipulated, different lighting
backgrounds and interference from other objects. In each task,
we select the setting where each method performed the best
for generalization testing, and then we record the success rate,
localization success rate, and normalized score. Each different
generalization scenario has 3 trials. Details results are available
in the Appendix.

TABLE II: Evaluation under object interference in Carry the
Tray.

Success / Localization / Normalized Score

Method Normal Setting Rubik’s Cubes _ Colorful Cubes
ACT /1110 /1 /110 /1 /110
DP3 /1 /110 X X1 2.5 X/ /150
3D Diffuser Actor X/ // 7.5 X/ /150 X1 X1 2.5
Ours /1 /110 /1 /110 /1110

In Carry the Tray, we replace the cups with Robik’s
Cubes and colorful cubes to test robustness against object
interference. These objects differ in size and color, which
not only affect RGB inputs but also alter depth, influencing
3D-based policies. Thanks to the two interfaces, particularly
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Fig. 5: Visualization under object interference in Carry the
Tray.

the pointflow, PPI focuses on key object-related regions, such
as the tray, without being distracted by other objects that
could affect localization. Interestingly, two 3D-based baselines
perform poorly, while the 2D-based ACT achieves better
generalization. This suggests that although objects in this task
have minimal impact at the pixel level in 2D images, they
have a greater effect on the 3D scene representation.

TABLE III: Evaluation under different lighting backgrounds
in Handover and Insert the Plate.

Success / Localization / Normalized Score

Method Normal Setting Dark Flickeri'ng Lighting
Environment Environment
ACT V1 V110 Xl X10.0 Xl X/0.0
DP3 V1 V110 Xl /167 /1 /110
3D Diffuser Actor Xl /167 Xl X10.0 Xl X10.0
Ours V1 V110 V1 /110 v /110

Flickering Lighting

Lighting Backgrounds

Fig. 6: Visualization under different lighting backgrounds in
Handover and Insert the Plate.

In Handover and Insert the Plate, we evaluate PPI
’s adaptability to varying lighting conditions. In dark and
flickering lighting environments, RGB-based information is
severely affected. However, despite using color information
as inputs, PPI ’s performance remains stable. This robustness
probably stems from its reliance on pointflow and keypose,
both derived mostly from the integration of semantic and posi-
tional features rather than pure color information. Meanwhile,
DP3 maintains some success, likely due to its use of colorless
point clouds.

TABLE IV: Evaluation under object interference in Wipe the
Plate.

Success / Localization / Normalized Score

Method Normal Setting Colorful Cubes Multi-plate
ACT Xl V115 X1 X125 X1 X125

DP3 /1110 X1 X1 0.0 X1 X10.0

3D Diffuser Actor Xl /150 Xl /150 Xl /150
Ours V1110 V1 V110 Xl /1175

Fig. 7: Visualization under object interference in Wipe the
Plate.

In Wipe the Plate, we introduce object interference
separately for the objects manipulated by each arm, leading to
partial occlusions and various visual distractions. Despite this,
only PPI maintains robust localization.

In Scan the Bottle, we evaluate our method’s generalization
to unseen objects. Notably, PPI enables zero-shot manip-
ulation of new objects by adjusting GroundingDino’s [17]
prompt to obtain novel initial query points Fy for pointflow
prediction. This is driven by PPI ’s learned conditional dis-
tribution p(F|Fy), which prioritizes object motion changes
over absolute global coordinates p(F’). As a result, even when
encountering novel rigid objects, PPI effectively estimates a
rough object’s relative transformations, enhancing task com-
pletion.

TABLE V: Evaluation under unseen objects in Scan the Bottle.

Success / Localization / Normalized Score

Method Normal Setting Box Yogurt bottle
ACT V1 /110 Xl X125 Xl X225
DP3 V1110 X1 X125 X X1 2.5
3D Diffuser Actor v1/110 X1 XI'2.5 XI X125
Ours V1 /110 Xl /115 Xl /115

Unseen Objects

Normal

Fig. 8: Visualization under unseen objects in Scan the Bottle.

V. SIMULATION EXPERIMENTS

We evaluate our approach on seven tasks using the bimanual
simulation benchmark RLBench2 [9]], aiming to address the
following questions: (1) How well does PPI perform on
complex bimanual tasks? (2) Are the proposed target gripper
poses and object pointflow interfaces effective? (3) How do
these interfaces learn scene features to enhance guidance for
continuous action prediction?

A. Simulation Experiments Setup

Benchmark. RLBench2 [9] is a bimanual manipulation
benchmark built on CoppeliaSim, encompassing tasks with
different levels of coupling, coordination, language instruc-
tions, and manipulation skills. We select seven representative



TABLE VI: Quantitative results on RLBench2. For each task, we present the average performance of three checkpoints
averaged over 100 rollouts. The metric “Avg. Success” measures the average success rate across seven tasks. PPI outperforms
baselines with higher Avg. Success and better results on most tasks. The best results are bolded.

Method Avg. Success T Box Ball Drawer Laptop Dustpan Tray Handover Easy
ACT 154 67.0 :70 383 ri00 1.7 12n 0.0:0.0 0.0 <00 1.3 215 0.0 <00
DP3 26.0 393 a0 27.0 66 0.0 200 6.0 <26 987 w05 6.3 106 4.7 <15
3D Diffuser Actor 64.7 547 w55 873 110 527 w0 407 w60 967 2206 76.0 2a 447
PerAct? 40.0 62.0 1262 50.0 w57 49.7 166 367 57 2.0 155 60.0 16 19.7 6.0
Ours 80.8 96.7 15 893 s 797 1:s 463 12 987 s 92,0 110 62.7 - 5

TABLE VII: Ablation studies. For all ablated models, we report best performance, while for PPI, we additionally present the
average performance across three checkpoints. Overall, integrating both keypose and pointflow achieves the highest performance.

Method Avg. Success T Box Ball Drawer Laptop Dustpan Tray Handover Easy
Continuous 47.6 84 24 41 0 98 82 4
Keyframe 49.0 84 94 36 0 92 12 25
Continuous on Keypose 53.6 71 81 29 1 99 86 8
Continuous on Pointflow 74.3 92 77 84 29 99 89 50
Ours (Best Ckpt) 82.6 98 91 84 47 100 93 65
Ours (Averaged) 80.8 96.7 89.3 79.7 46.3 98.7 92.0 62.7

and challenging tasks and regenerate the training data. The
official dataset suffers from significant misalignment between
training and evaluation, such as robot shadows present in the
training set but absent during evaluation. Additionally, it lacks
meta information for acquiring object pointflow.

Baselines. We use the same three baselines as in the
real-world experiments: DP3, ACT, and 3D Diffuser Actor.
Additionally, we include PerAct? [9], a state-of-the-art method
previously reported on RLBench2. It employs a Perceiver ar-
chitecture to voxelize 3D spaces and predict keyframe actions.

Metrics. Each method is evaluated across 100 rollouts per
task with varying initial states for each tasks. We report
both per-task and average success rates, with all performances
computed from three different checkpoints.

B. Simulation Main Results

As shown in Table PPI achieves an average success rate
of 80.8%, significantly outperforming the baselines. Compared
to ACT (2D-based algorithm), PPI leverages 3D semantic
neural fields, and provides superior spatial perception. While
both methods utilize 3D point clouds, PPI outperforms DP3
by 54% in success rate, demonstrating that PPI’s spatial
information processing is more useful than DP3’s approach
of encoding the entire scene into a single token.

Moreover, ACT and DP3, as continuous-action-based poli-
cies, underperforms keyframe-based policies like 3D Diffuser
Actor and PerAct? by a margin of at least 10%. This disparity
arises from keyframe-based methods offering more effective
perception capabilities rather than overfitting to trajectories.
By using keypose as an interface, PPI integrates the spatial
awareness of keyframe methods with semantic neural fields,

achieving substantial improvements over continuous-action-
based approaches.

Beyond that, keyframe-based policies like 3D Diffuser Ac-
tor and PerAct? fall behind our model in tasks with movement
constraints, such as the lift tray task (which requires both
hands to remain level) and the push box task (which involves
continuously pushing). This is because our policy provides
greater flexibility in managing such constraints, enabled by
PPI ’s supervision of continuous actions between keyframes.
Additionally, in tasks demanding high spatial precision, such
as object-picking tasks like Drawer and Handover Easy, our
model significantly outperforms baselines. This advantage
stems primarily from the use of object pointflow as an in-
terface, which enhances localization accuracy.

C. Ablation Study

As shown in Table we analyze the contributions of
target gripper poses and object pointflow interfaces on RL-
Bench2 by comparing different ablated models at their best
performance.

We begin by evaluating the vanilla keyframe and contin-
uous baselines, which predict only keypose or continuous
actions, respectively. In tasks requiring precise positioning,
such as Handover Easy and Lift Ball, the keyframe-based
policy demonstrates superior localization. However, in tasks
involving horizontal lifting (Lift Tray) or curved motion tra-
jectories (Sweep to Dustpan), the continuous-based approach
significantly outperforms the keyframe method. These results
indicate that relying solely on either keyframe or continuous
actions is insufficient for general manipulation tasks.

Next, we modify the continuous-based policy by incorpo-
rating target gripper keypose and object pointflow predictions
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Fig. 9: Heatmap of the attention weights of continuous action tokens. The y-axis represents continuous action tokens as
queries. The x-axis sequentially displays continuous action, keypose, pointflow, and scene tokens as keys.

(line 3 and 4 in Table[VII). Conditioning on separate interfaces
improves performance, likely due to the local spatial features
they provide. Moreover, combining both interfaces yields
further gains, highlighting the synergy between keypose and
pointflow in enhancing performance on downstream tasks.

D. Visualization Analysis

In this section, we intuitively analyze how the proposed
interfaces enhance localization accuracy and generalization to
distractors and task-irrelevant backgrounds.

As shown in Figure [I0] we visualize attention weights
for our policy and the vanilla continuous-based policy in the
“Lift Tray” task on RLBench2. The left image reveals that in
the continuous-based policy, action tokens fail to consistently
focus on the tray—the key task-relevant object and disperse
attention across both the tray and the robotic arm. This
suggests why continuous-based policies often struggle with
precise localization, as observed in previous experiments.

In contrast, as shown in the middle and right images,
PPI’s pointflow and keypose tokens strongly attend to the
tray, with pointflow tokens specifically concentrating on its
edges—where the gripper is poised to grasp. Since the initial
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Fig. 10: Visualization of the attention weights of interface
tokens. We use “Lift Tray” task on RLBench2 as an example.
The red area corresponds to larger attention weight, while
the blue area corresponds to smaller attention weight. Left:
The attention weights of continuous tokens to the 1024 scene
tokens in the vanilla continuous-action-based policy. Middle:
The attention weights of point flow tokens to the scene tokens
in PPI. Right: The attention weights of keypose tokens in PPI.

query points are sampled from the tray rather than the cube
atop it, the model learns to deprioritize the cube. This explains
why in the ”Carry the Tray” task, replacing in-distribution cups
with out-of-distribution Rubik’s Cubes and colorful cubes does
not impair PPI ’s localization performance. By strategically
selecting initial query points during training, the model learns
to track the overall object’s motion, improving generalization
under disturbances.

Further, we examine how these interfaces guide continuous
action prediction. As shown in Figure 9] continuous action
tokens exhibit significantly higher attention weights toward
keypose and pointflow tokens than scene tokens, underscoring
the critical role of interfaces in action prediction. By incorpo-
rating target gripper poses and object pointflow as interfaces,
PPI not only maintains focus on task-relevant regions despite
scene variations but also alleviates the learning burden on
action tokens by distilling key information, rather than directly
querying from the entire scene.

VI. CONCLUSION AND LIMITATION

We introduce PPI, an end-to-end interface-based manipu-
lation policy that leverages target gripper poses and object
pointflow. PPI achieves state-of-the-art performance on the
RLBench2 simulation benchmark and demonstrates strong
effectiveness and robustness in real-world experiments.

Limitation. There remain two main limitations. First, the
computational cost of visual foundation models and the dif-
fusion process constrains efficiency. Future work will focus
on accelerating diffusion sampling and adopting lightweight
vision models. Second, cross-embodiment evaluation on differ-
ent robotic platforms is essential to assess PPI’s generalization
across hardware.
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APPENDIX
A. Foundation Models

PPI leverages foundation models in various aspects, either
to generate ground-truth labels or serve as encoders. In this
section, we will specifically describe how we utilize these
foundation models, along with the exact versions and settings
of the models we use.

3D Semantic Fields. To obtain semantic features from 2D
images, we leverage the DINOv2 ViT-S/14 model, with a fea-
ture dimension of 384. In practice, we crop and downsample
the scene point clouds to 6144 in simulations and 3072 in
real-world experiments, resulting in 3D semantic fields with
dimensions of 6144x387 and 3072x387, respectively, which
will be further downsampled by PointNet++ in the subsequent
processing. Here, the dimension of 387 includes both the
semantic features and the xyz coordinates of the points.

Initial Point Sampling. In both simulation and real-world
experiments, we sample 200 points on the object, which has
been shown to effectively capture the object’s motion. For
simulation tasks, we typically select a single camera from
which the target object is visible at the first timestep in
each episode. We then feed a language prompt to the SwinB
CogCoor version of the Grounding DINO model to obtain
the bounding box for the target object from that camera.
This bounding box is subsequently passed to the ViT-B SAM
model, which generates a mask for the pixels corresponding
to the target object.

Language. Text instructions are encoded using the CLIP
ResNet50 text encoder and projected through a linear layer to
generate the language token.

Object Pose Estimation. In simulation, we generate a
dataset that includes the ground truth of 6D pose of the
objects. During the real-world data collection process, we
utilize BundleSDF[39] to obtain the meshes of unknown
objects with a coarse 6D pose. With the meshes of objects,
we employ the model-based method of FoundationPose[2]]
to enhance the precision of the objects’ 6D pose. More
specifically, we perform 6D pose estimation on the first frame
of each demonstration, and for each subsequent frame, we use
6D pose tracking.

B. Architecture Details

Relative Attention. Our 3D denoising transformer takes
four types of 3D tokens as input: point flow tokens F,
keyframe action tokens af’z, continuous action tokens a.”,
and scene point cloud tokens S;. Each 3D token is represented
by a latent embedding and a 3D position. Following the 3D
Diffuser Actor [13], our model applies relative self-attention
among all 3D tokens. We use a rotary positional embedding to
encode relative positional information in the attention layers,
with the attention weight between query ¢ and key k given
by:

€q,k X quM(cq — ¢k )Tk

where x4, and xj, are the features of the query and key, and
¢q and ¢y, are the corresponding 3D coordinates of the query

and key tokens. M is a matrix function that depends only on
the relative positions of the 3D coordinates of the query and
key tokens. Relative attention allows us to effectively leverage
the relative 3D spatial information between tokens within the
transformer.

Robot State. For each gripper, the arm state consists of the
end-effector position, quaternion, and gripper state, forming
an 8-dimensional vector. The gripper state is either 0 (closed)
or 1 (open). In our 3d denoising transformer, our method uses
separate tokens for the left and right hand actions, helping the
model focus on different regions. For predicting 50 continuous
actions, we use 100 tokens, and for predicting 4 keyframe
actions, we use 8 tokens. The robot state is tokenized with
a three-layer MLP, similar to how we tokenize language and
initial query points.

Network Architecture. Next, we detail the structure of our
3D denoising model as shown in Figure [TT] At timestep ¢ and
denoising step i, let a*’ and a"" be the noised keyframe action
a¥ and continuous action af, respectively. The transformer
incorporates the scene tokens S;, language tokens I, query
points tokens Fp, and the noised action tokens a'"* and a$"'.

All tokens in each self-attention block will first perform
parallel attention with the language tokens [ to capture the
relevant language instructions. Next, we concatenate the query
points tokens Fy and scene tokens S, applying relative self-
attention. The resulting tokens for Fp pass through three MLP
layers, where each token outputs a 12-dimensional vector
representing the xyz coordinates of that point for the next
4 keyframes. Then, we perform relative self-attention on
the noised keyframe action tokens af’l and the pointflow
tokens and the scene tokens from the previous layer. The
output corresponding to the keypose token is passed through
three MLP layers to map it to the action dimension, with
supervision provided by the keypose noise ef "', Finally, we
perform relative self-attention between the noised continuous
action tokens a;”* and the detached vector from the previous
layer. The output corresponding to the continuous token is
also passed through three MLP layers to map it to the action
dimension, with supervision provided by the continuous noise
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Fig. 11: Detailed architecture of 3D denoising model.



C. Simple PPI

In the real-world, the original PPI has an average inference
speed of 2.63 Hz. Since the predicted actions are dense and
continuous, we excute the first few steps (e.g., 3 steps) of
the 50 predicted actions during inference, which maintains
performace while ensuring smooth motion. Additionally, we
implemented Simple PPI to further reduce computation costs.
Simple PPI achieves 10.52 Hz by reducing whole scene
tokens (3072 — 512), downsampled scene tokens (512 —
64), pointflow tokens (200 — 50), DDIM denoising steps (20
— 5), and halving the number of transformer layers in real-
world settings. As shown in Table [VIII] this results in nearly
4x faster inference without much accuracy loss.

TABLE VIII: Performance of Simple PPI.

SR (%) T /Loc-SR (%) 1 / Normalized Score 1

Method Carry the Tray  Handover & Insert the Plate  Wipe the Plate

Simple PPI (10.52 Hz) 50.0 / 70.0 / 6.0
PPI (2.63 Hz) 50.0 /100 / 7.8

30.0 /100 /5.7
40.0 / 100 / 7.7

50.0/70.0/6.8
70.0 /70.0 / 8.3

D. More Tasks in Real-World

To demonstrate PPI’s ability to handle high-precision tasks
and manipulate deformable objects, we design two new real-
world tasks. For high precision task Press the Cap of Bottle,
one arm picks up a bottle and places it on a 3cm x 3cm cube,
while the other precisely presses its cap (0.75cm radius). For
deformable object task Wear the Scarf, arms are required to
lift a scarf simultaneously and wrap it around a mannequin,
where CoTracker is used to obtain pointflow ground truth.
To showcase PPI’s capability to align the scanner and bottle
from different initial states and complete single-arm tasks, we
design a single-arm experiment Scan the Bottle with Single
Arm where the bottle starts in two directions: 1) facing the
scanner and 2) at a 45-degree angle, requiring the scanner to
rotate for a successful scan. The procedures for these three
tasks are available on https://yuyinyang3y.github.io/PPl/. As
shown in Table [[X] our method outperforms the baseline
(ACT) across all tasks.

TABLE IX: Real-world results of three extra tasks.

SR (%) 1 /Loc-SR (%) 1 / Normalized Score 1

Method Wear the Scarf  Press the Cap of Bottle Scan the Bottle (Unimanual)

ACT
Ours

40.0/70.0/5.7
70.0 / 80.0 / 7.7

10.0/20.0 /3.0
40.0 / 80.0 / 6.7

20.0 /70.0 /1 4.7
80.0 / 100/ 9.3

E. Baseline Implementation

In the simulation benchmark, we report the scores for DP3,
ACT, PerAct?, and 3D Diffuser Actor from their respective
papers. For ACT and PerAct?, we reproduce the results using
the official code in RLBench?2 and train each method for 100k
steps, as suggusted in the original paper. The final scores are
obtained by averaging the scores from epochs 99900, 99800,
and 99700. For DP3, we directly double its action dimension
and adapt it to the bimanual task setting. We use the default

hyperparameter settings, prediction horizon, observation step,
and other configurations from the paper, and train the model
for 3000 epochs as suggested. We average the success rate
of epoch 3000, 2900 and 2800 for each task. Similar to our
own method, we double the number of action tokens for 3D
Diffuser Actor, using separate actions to predict the left and
right hand movements instead of directly doubling the action
dimension. We select the checkpoint corresponding to the
epoch when the eval location and rotation accuracy converged
during the model training process. For simple tasks like ball
lifting, we chose steps 10000, 11000, and 12000, while for
more complex tasks such as handover easy, we select steps
16000, 18000, and 20000.

For real-world experiments, we implement the baselines
in the same way as in simulations, but trained them with
different durations due to the increased complexity of real-
world tasks: ACT for 10000 epochs, DP3 for 8000 epochs
(with its prediction horizon N,. adjusted to 10 for better
performance), and 3D Diffuser Actor for 100000 steps.

F. Detailed Real-world Experiment Settings

As shown in Figure [I2{T3] the yellow area represents the
variations during training, and the red area represents the
settings during testing. We set 10 settings for each task and
every method has 3 trials for each setting.

Fig. 12: Detailed 10 settings of Carry the Tray. The tray
remains relatively stationary while the platform is moved to
10 different locations, serving as 10 distinct settings.

Train Test

&

/

Fig. 13: Detailed 10 settings of Handover and Insert the
Plate. On the left, the plate varies across 5 slots on the
rack, while on the right, the overall setup shifts between 2
designated positions, combining to form 10 different settings.
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TABLE X: Generalization tests across all settings.

Unseen Objects

Lighting Backgrounds

Object Interference

Method

Carry Handover & Insert Wipe Carry Handover & Insert Wipe Carry Handover & Insert Wipe
ACT I XX XX XX Xl X XX IV XX XX
DP3 /I X Xl v 8 S Xl v I XX Xl X Xl X
3D Diffuser Actor X/ X XX XX XX Xl X XX XX Xl X Xl X
Ours I Xl v JIX /X IV IV /I X I X

Train
Test
Train Test
X O

Fig. 14: Detailed 10 settings of Wipe the Plate. On the left,
the sponge changes positions between the 2 sides of the yellow
training area, and on the right, the plate moves across the 5
red areas shown, creating a total of 10 settings.

Test

J fa8es

Fig. 15: Detailed 10 settings of Scan the Bottle. Among the
10 settings, the bottle changes its position within the 10 red
areas on the shelf, with variations in both position and rotation,
while the scanner is placed randomly in minor adjustments on
the platform.

G. Detailed Real-world Results

We define three metrics: Success Rate (SR), Localization
Success Rate (Loc-SR), and Normalized Score. And each task
has several intermediate stages.

Specifically, Carry the Tray consists of four steps: (1) Pick
the Tray, (2) Lift the Tray, (3) Place the Tray, (4) Return. The
Loc_SR is recorded as 100% only if the first two steps are
achieved.

Handover and Insert the Plate involves three steps: (1)
Pick the Plate, (2) Handover, (3) Insert the Plate. The Loc_SR
is marked as 100% only if the robot successfully picks up the
plate.

Wipe the Plate consists of the following four steps: (1)
Pick the Sponge, (2) Pick the Plate, (3) Wipe, (4) Place. The
Loc_SR is recorded as 100% only if both the sponge and the

plate are successfully picked up.

For Scan the Bottle, the sequence is as follows: (1) Pick
the Bottle, (2) Pick the Scanner, (3) Scan, (4) Place Bottle
in Box. Likewise, the Loc-SR is marked as 100% only when
both the bottle and the scanner are successfully picked up.

In Wear the Scarf, the arms need to carry out the following
steps: (1) Pick the Scarf, (2) Lift the Scarf, (3) Wear the Scarf.
If the scarf is picked up successfully, the Loc_SR will be
recorded as 100%.

Press the Cap of Bottle also includes three motions: (1)
Pick the Bottle, (2) Place the Bottle, (3) Press the Cap. The
Loc_SR will be 100% if the robot successfully picks up the
bottle and places it on the cube.

For the single-arm experiment Scan the Bottle with Single
Arm, the procedure comprises three stages: (1) Pick the
Scanner, (2) Scan, (3) Place the Scanner. The Loc_SR is
marked as 100% if the first stage is completed.

Additionally, the score increases by 1 point upon the com-
pletion of each stage. To facilitate comparison, the total score
is then normalized to a scale of 10 points, resulting in the
Normalized Score. The detailed results from the real-world
experiments are available in Table [XI{XVII|

H. Detailed Real-world Generalization Results

In the real-world generalization experiments, there are two
settings for each generalization scenario (unseen objects, light-
ing background changes and object interference), with each
setting undergoing 3 trials. The scoring criteria (SR, Loc_SR
and Score) and detailed real-world results remain consistent
across these trials.

Additionally, we add all generalization tests to the first three
tasks, all outperforming the baselines. There are two different
settings in each of these generalization tests. Unseen ob-
jects: Vary tray/plate shapes/colors (Carry/Handover); replace
sponge with rag and round plate with rectangular one (Wipe).
Lighting: Dark and flickering lighting environments. Object
interference: Introduce different distractor objects. Results are
summarized in Table [X]

The detailed results from the real-world generalization ex-

periments are available in Table [XVIIIHXXI]



TABLE XI: Detailed results on Carry the Tray task.

Method Case Index Pick the Tray Lift the Tray Place the Tray Return SR (%) 1 /Loc-SR (%) 1 / Score 1

00/1.0/3
1.0/10/4
00/10/2
1.0/10/4
00/10/2
1.0/10/4
00/107/2
1.0/10/4
1.0/1.0/4
00/10/2
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TABLE XII: Detailed results on Handover and Insert the Plate task.

Method Case Index Pick the Plate Handover Insert the Plate SR (%) T /Loc-SR (%) 1 / Score 1

v X 00/10/2
1.0/10/3
00/10/2
00/10/2
00/10/2
00/1.0/1
1.0/10/3
1.0/1.0/3
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1.0/10/3
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TABLE XIII: Detailed results on Wipe the Plate task.

Method Case Index Pick the Sponge Pick the Plate Wipe Place SR (%) 1 /Loc-SR (%) 1 / Score 1

00/107/3
1.0/1.0/4
00/007/1
1.0/1.0/4
1.0/10/4
1.0/1.0/4
00/007/1
1.0/1.0/4
1.0/1.0/4
1.0/1.0/4
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TABLE XIV: Detailed results on Scan the Bottle task.

Method Case Index Pick the Bottle Pick the Scanner Scan Place Bottle in Box SR (%) 1 /Loc-SR (%) 1 / Score T
1 v v v v 1.0/1.0/4
2 v v v 4 1.0/107/4
3 v 4 v 4 1.0/1.0/4
4 v v v 4 1.0/1.0/4
PPI 5 4 v v 4 1.0/107/4
6 v v v v 1.0/10/4
7 X 4 X X 00/0.07/1
8 v v v v 1.0/107/4
9 4 4 4 v 1.0/107/4
10 4 4 4 4 1.0/1.0/4
1 v v X X 00/107/2
2 X v X X 00/0.0/1
3 v v X X 00/10/2
4 4 4 4 4 1.0/107/4
5 X 4 X X 00/00/1
ACT 6 4 4 X 4 00/10/3
7 X 4 X X 00/00/1
8 v v X X 00/107/2
9 X X X X 00/00/0
10 X 4 X X 00/007/1
1 v X X X 00/00/1
2 v v v v 1.0/10/4
3 v v X X 00/107/2
4 X 4 X X 00/00/1
5 X v X X 00/00/1
DP3 6 X v X X 00/00/1
7 4 v v 4 1.0/1.0/4
8 X X X X 00/00/0
9 4 X X X 00/0.0/1
10 v 4 v v 1.0/107/4
1 X 4 X X 0.0/0.0/1
2 v X X X 00/00/1
3 v v v v 1.0/10/4
4 v v X v 00/10/3
. 5 X 4 X X 00/00/1
3D Diffuser Actor 6 v X X X 00700/ 1
7 v 4 v 4 1.0/1.0/4
8 v v X X 00/107/2
9 X 4 X X 00/00/1
10 X 4 X X 00/00/1

TABLE XV: Detailed results on Wear the Scarf task.

Method Case Index Pick the Scarf Lift the Scarf Wear the Scarf SR (%) 1 /Loc-SR (%) 1/ Score 1

1.0/10/3
1.0/10/3
00/1.0/2
0.0/00/0
1.0/1.0/3
1.0/1.0/3
1.0/10/3
1.0/10/3
00/00/0
1.0/10/3
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00/00/0
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1.0/1.0/3
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00/10/1
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TABLE XVI: Detailed results on Press the Cap of Bottle task.

Method Case Index Pick the Bottle Place the Bottle Press the Cap SR (%) 1 /Loc-SR (%) 1 / Score 1

1.0/10/3
1.0/1.0/3
00/10/2
0.0/00/0
00/10/2
00/00/0
00/10/2
1.0/1.0/3
1.0/1.0/3
00/10/2
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oI R N N N N

00/00/1
00/00/1
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00/00/0
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TABLE XVII: Detailed results on Scan the Bottle with Single Arm task.

Method Case Index Pick the Scanner Scan Place the Scanner SR (%) 1 /Loc-SR (%) 1 / Score 1

1.0/1.0/3
1.0/1.0/3
1.0/10/3
1.0/10/3
00/1.0/2
1.0/10/3
00/1.0/2
1.0/10/3
1.0/1.0/3
1.0/1.0/3

PPI
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00/1.0/1
00/1.0/1
0.0/0.0/0
00/00/0
00/1.0/2
1.0/10/3
00/00/0
1.0/10/3
00/1.0/2
00/1.0/2
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TABLE XVIIIL: Detailed generalization experiment results on Carry the Tray task.

Method Generalization Type Case Index Pick the Tray Lift the Tray Place the Tray Return SR (%) T /Loc-SR (%) 1 / Score 1
Normal Normal Setting v v v v 1.0/10/4
Unseen Objects Round Tray 4 v v 4 1.0/1.0/4
Brown Tray 4 v v 4 1.0/1.0/4
PPI Lighting Changes Dark 4 v v 4 1.0/1.0/4
Flickering 4 4 X X 00/1.0/2
Object Interference Rubik’s Cubes 4 4 v v 1.0/1.0/4
Colorful Cubes 4 4 v 4 1.0/1.0/4
Normal Normal Setting v v v v 1.0/10/4
Unseen Objects Round Tray X X X X 0.0/0.0/0
Brown Tray X X X X 0.0/0.0/0
ACT Lighting Changes Dark X X X X 0.0/0.0/0
i Flickering X X X X 0.0/0.0/0
Object Interference Rubik’s Cubes 4 v v 4 1.0/1.0/4
Colorful Cubes 4 v v 4 1.0/1.0/4
Normal Normal Setting v v v v 1.0/10/4
Unseen Objects Round Tray 4 v v 4 1.0/1.0/4
Brown Tray v X X X 00/007/1
DP3 Lighting Changes Dark 4 4 v 4 1.0/1.0/4
Flickering v v v v 1.0/10/4
Object Interference Rubik’s Cubes 4 X X X 0.0/0.0/1
Colorful Cubes v v X X 00/1.0/2
Normal Normal Setting 4 4 4 X 00/1.0/3
. Round Tra v v X X 00/1.0/2
Unseen Objects Brown Tra§ 4 4 X X 00/1.0/2
3D Diffuser Actor Lighting Changes Dark X X X X 0.0/0.0/0
i Lighting X X X X 0.0/0.0/0
Object Interference Rubik’s Cubes 4 v X X 00/1.0/2
Colorful Cubes 4 X X X 00/0.0/1




TABLE XIX: Detailed generalization experiment results on Handover and Insert the Plate task.

Method Generalization Type Case Index Pick the Plate Handover Insert the Plate SR (%) 1 /Loc-SR (%) 1 / Score 1
Normal Normal Setting v v v 1.0/10/3
. Rectangular Plate v X X 00/1.0/1
Unseen Objects Green Plate v v v 10/1.0/3
PPI Lightine Ch Dark v v v 1.0/1.0/3
1ghting thanges Flickering v v v 10/10/3
Obiect Tnterf Ny Colorful Cubes v v v 1.0/1.0/3
Ject Thterferenice Multi-Plate v v X 00/1.07/2
Normal Normal Setting v 4 4 1.0/10/3
o Rectangular Plate X X X 0.0/0.0/0
Unseen Objects Green Plate v x x 00/107/1
ACT - Dark X X X 00/0.0/0
Lighting Changes Flickering X X X 0.0/00/0
Obiect Tnterference Colorful Cubes v 4 X 00/1.0/2
) Multi-Plate v v X 00/1.0/2
Normal Normal Setting v v v 1.0/10/3
. Rectangular Plate v X X 00/1.0/1
Unscen Objects Green Plate v v v 10/1.0/3
DP3 - . Dark v v X 00/1.0/2
Lighting Changes Flickering v v v 10/10/3
Obiect Tnterference Colorful Cubes X X X 0.0/0.0/0
Jee © Multi-Plate v X X 00/1.0/1
Normal Normal Setting v v X 00/1.0/2
e Rectangular Plate v X X 0.0/1.0/1
Unseen Objects Green Plate v x x 00/107/1
3D Diffuser Actor Lighting Changes Dark X X X 00/00/0
ghting thang Flickering X X X 0.0/00/0
Obect Tnterference Colorful Cubes v X X 00/1.0/1
) Multi-Plate v X X 0.0/1.0/1

TABLE XX: Detailed generalization experiment results on Wipe the Plate task.

Method Generalization Type Case Index Pick the Sponge Pick the Plate Wipe Place SR (%) T /Loc-SR (%) 1 / Score 1
Normal Normal Setting 4 v v 4 1.0/1.0/4
, o Rag v v VR 10/1.0/4
Unseen Objects Rectangular Plate v v v X 00/1.0/3
PPI Lishting Chanees Dark v v v v 1.0/10/4
1ghting hanges Flickering v v v v 1.0/10/4
Obiect Tnterference Colorful Cubes v v v v 1.0/10/4
i Multi-Plate v v VA 00/10/3
Normal Normal Setting v v X v 00/1.0/3
. Rag v X X X 00/00/1
Unseen Objects g tangular Plate v v X X 00/10/2
ACT Lighting Changes Dark X X X X 00/0.0/0
ghting thang Flickering X X X X 0.0/00/0
Object Interference Colorful Cubes 4 X X X 0.0/0.0/1
) Multi-Plate v X x X 0.0/00/1
Normal Normal Setting 4 v v 4 1.0/1.0/4
, o Rag v v VR 10/1.0/4
Unseen Objects g angular Plate v X X X 0.0/00/1
DP3 Lightine Chanees Dark v v v v 1.0/10/4
1ghting Chang Flickering v v v v 1.0/10/4
Object Interference Colorful Cubes X X X X 00/00/0
) Multi-Plate X X X X 00/0.0/0
Normal Normal Setting 4 v X X 00/1.0/2
. Rag v v X X 00/1.0/2
Unseen Objects g tangular Plate X v X X 0.0/00/1
3D Diffuser Actor Liehting Changes Dark v X X X 00/0.0/1
shting Lhanges Flickering v X X X 0.0/00/1
Obiect Interfe . Colorful Cubes v v X x 00/107/2
Ject Tnterference Multi-Plate v v X X 00/1.07/2

TABLE XXI: Detailed generalization experiment results on Scan the Bottle task.

Method Case Index Pick the Bottle Pick the Scanner Scan Place Bottle in Box SR (%) 1 /Loc-SR (%) 1 / Score 1

Normal Setting v v v v 1.0/10/4

PPI Box v v 4 X 1.0/1.0/3
Yogurt Bottle 4 v 4 X 1.0/1.0/3

Normal Setting v v v v 1.0/10/4

ACT Box X v X X 00/00/1
Yogurt Bottle X v X X 00/00/1

Normal Setting v v v v 1.0/10/4

DP3 Box X v X X 00/00/1
Yogurt Bottle X v X X 00/00/1

Normal Setting v v v v 1.0/10/4

3D Diffuser Actor Box X v X X 00/00/1
Yogurt Bottle X v X X 00/00/1
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